motach

Volume

A two Tank System

Consider the two-tank mixing apparatus shown in the figure. Each tank has a capacity of 500 gal and initially contains 100 gal of fresh water. At time t=0, the well-stirred mixing process begins with the specified input concentration and flow rates.

Tank 1: V_1 Tank 2: V_2 Max (apasity: 500 gal

Sult

Tank 1: Q_1 $V_2(0) = 100$ Tank 1: Q_2 Concordiation $Q_1(0) = 0$ Tank 1: Q_2

 $Q_{1}^{\prime}(t) = C_{i}, r_{i_{1}} - C_{o}, r_{o_{1}} = \frac{1}{2}r_{i_{1}} + C_{i_{2}}(t)r_{i_{1}} - C_{i_{1}}(t)r_{i_{2}}$ $C_{o}(t) = \frac{Q_{1}(t)}{V_{2}(t)}$ $C_{o}(t) = \frac{Q_{2}(t)}{V_{2}(t)} \rightarrow C_{o}, (t) = \frac{Q_{1}(t)}{V_{1}(t)}$ $C_{o}(t) = \frac{Q_{1}(t)}{V_{2}(t)} \rightarrow C_{o}, (t) = \frac{Q_{1}(t)}{V_{1}(t)}$ $C_{o}(t) = \frac{Q_{1}(t)}{V_{1}(t)} \rightarrow C_{o}, (t) = \frac{Q_{1}(t)}{V_{1}(t)}$ $C_{o}(t) = \frac{Q_{1$

Uz (4) = Uz (0) + (riz+ ray) = 100 + (rz - (rs+ru)) =

Problem 30 $r_1 = r_3 = 5$ 94 min $v_2 = 6$ 94 min $r_4 = 4$ 94 min $V_{2}(t) = 100 + (6-9)t = 100 - 3t = 0 \Rightarrow t^{*}_{2} = \frac{100}{3} \approx 33, 3 \text{ min}$ $V_{1}(t) = 100 + (9-6)t = 100 + 3t = 50 \Rightarrow t^{*}_{1} = \frac{400}{3} \approx 1.5 \text{ hown}$ $t^{*}_{2} = \min(t^{*}_{1}, t^{*}_{2}) \approx 1.5 \text{ how}$ $0 \leq t \leq t^{*}_{2} = 1 \text{ interval of interest}$

A Two-Tank Mixing Problem

Consider the two-tank connection shown in Figure 4.1. As in Chapter 2, the solute and solvent are assumed to be salt and water, respectively, and the solutions in both tanks are "well-stirred." Assume each tank has a capacity of 500 gal. Initially, Tank 1 contains 200 gal of fresh water, while Tank 2 has 50 Ib of salt dissolved in 300 gal of water. At time t = 0, the flow begins at the rates and concentrations shown in Figure 4.1. Let the amounts of salt in the two tanks at time t be denoted by $Q_1(t)$ and $Q_2(t)$, respectively. The problem is to determine $Q_1(t)$ and $Q_2(t)$ on the time interval that is physically relevant (that is, we will stop the flow if one of the tanks becomes completely filled or completely drained). Time t is in minutes.

$$V_1(0) = 200$$
 gel.
 $Q_1(0) = 0$ - Fresh Water
 $C_1(0) = 0$
 $V_2(0) = 300$ gel.
 $Q_2(0) = 50$ lb.
 $C_1(0) = 6$?

$$Q_{2}(t) = C_{i_{1}} r_{i_{2}} - C_{o_{2}} r_{o_{2}}$$

$$= (|2(0) + 2 \frac{a_{1}(t)}{V(t)}| - \frac{Q_{2}(t)}{V(t)}(6+y)$$
out

FIGURE 4.1

Volumes:

 $V_{i}(t) = 200 + (f_{i} - r_{o})t = 200 + (10+6 - (2+4))t = 200 + (0t)$

1/2(t) = 300+ (riz -rox) t = 300+ (12+2-(6+8))t = 300

Time of interest out <6 = 6 = 30 min